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Abstract. A rectangular region of smoothly varying, inhomogeneous, isotropic elastic material is considered; two
types of material are dealt with: if opposite pairs of edges are parallel to the x, y axes, in one case the elastic
moduli vary smoothly with x, while in the other they vary smoothly with y. The region is in a state of plane strain,
three of its edges being traction-free, the fourth being subjected to a self-equilibrated, in-plane, load. Inequality
estimates are obtained descriptive of the spatial decay of effects away from the loaded end. The results of the paper
imply how the estimated decay rate varies with the constitutive profile, and may have applications to functionally
graded materials.

Key words: inhomogeneous istropic elastic material, plane strain, spatial-decay estimates, Saint Venant’s principle.

1. Introduction

One of the areas where the biharmonic equation has proved most useful is that of two-
dimensional elasticity: essentially, the determination of the stress components in the context of
plane strain and of generalized plane stress (introduced by Filon) for a homogeneous isotropic
elastic material is reducible to the solution of this equation under suitable boundary conditions
(in the case of a simply connected region). The corresponding issues for (smoothly varying)
inhomogeneous isotropic elastic material lead to a generalized biharmonic equation. Such is-
sues – which have applications to the technologically important functionally graded materials
– form the subject of this paper.

This paper considers a rectangular strip consisting of smoothly varying inhomogeneous,
isotropic elastic material in an equilibrium state of plane strain, three of its edges being
traction-free and the remaining one – corresponding to x = 0 – being (necessarily) subjected
to a self-equilibrated (in plane) load. The objective is to derive inequality estimates reflecting
decay of effects away from the loaded end. Two types of (suitably restricted) smoothly varying
inhomogeneity are considered:

(i) the elastic moduli vary smoothly with the rectangular coordinate y,
(ii) they vary smoothly with the rectangular coordinate x,

the x, y coordinates being in the directions of the edges of the rectangular region.
In the case of the inhomogeneity of type (i) the inequality estimate derived is of the cross-

sectional type based on a second-order differential inequality. An inequality estimate of the
‘energy’ type based on a differential-integral is also quoted, this being a slight generalization
of that dealt with in [1]. The estimated decay rate arising from the two approaches is the same.
In the case of the inhomogeneity of type (ii) the inequality estimate derived is of the ‘energy’
type based on a differential-integral inequality.
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Spatial-decay estimates in two-dimensional elasticity date back to the seminal paper of
Knowles [2]. Comprehensive reviews of these and other spatial-decay estimates in elasticity,
and in the more general context of elliptic equations, may be found in [3–6]. The general
methodologies used in this paper are due to Knowles [2], and to Flavin and Knops [7]; the
former deals with an inequality estimate for an energy-like measure, based on a differential-
integral inequality, while the latter deals with an inequality estimate for a positive-definite
cross-sectional measure, based on a second-order differential inequality estimate.

It should be noted that the smoothly varying inhomogeneous elastic materials considered
here provide a model for technologically important FGMs- functionally graded materials.
These materials have received considerable attention in recent literature, e.g. [8–12]. Spatial-
decay estimates in the context of anti-plane elastic shear deformations have been studied
intensively in [10–12].

Whereas the paper discusses plane strain only all the analyses given are easily modified to
cater for the case of generalized plane stress.

2. Notation and equations

The Airy stress function φ(x, y) is introduced to simplify the analysis, and is such that the
(relevant) stress components τxx, τxy, τyy are given by

τxx = φyy, τyy = φxx, τxy = −φxy, (1)

where subscripts attached to φ mean partial differentiation with respect to the appropriate vari-
ables, both here and subsequently. It proves convenient – in the case of both inhomogeneities
considered – to work with elastic moduli ε,

_
ε related to Young’s modulus E, Poisson’s ratio

σ by means of

ε = (1 − σ 2)E−1, ε̄ = σ (1 − σ )−1ε . (2)

It is assumed throughout that

E > 0 0 ≤ σ ≤ 1/2 (3)

and that thereby

ε > 0, ε̄ ≥ 0 . (4)

It should be noted that in the case of incompressibility (σ → 1/2) ε̄ → ε.

Throughout the paper a rectangular region 0 < x < L, 0 < y < 1 is considered, (x, y)

denoting rectangular Cartesian coordinates. It is supposed to be occupied by smoothly varying
inhomogeneous isotropic elastic material in an equilibrium state of plane strain, the edges
x = L, y = 0, 1, being traction-free, the remaining edge being (necessarily) subject to a
self-equilibrated load. Sometimes a semi-infinite rectangular strip is envisaged (L → ∞).

We adopt the following notation: Rx denotes the sub-rectangle between abscissae (x, L),
R0 denoting the entire rectangle, and Lx denotes the line within the rectangular region with
abscissa x, parallel to and in the same sense as the y-axis.

Ordinary differentiations with respect to x and y are denoted throughout by superposed
primes and dots, respectively. In the case of inhomogeneities of type (i) (for which ε, ε̄ are
smooth functions of y) the equation satisfied by φ is easily shown to be
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(εφxx)xx + 2(εφxy)xy + (εφyy)yy−
..

ε̄ φxx = 0, (5)

while in the case of inhomogeneities of type (ii) (for which ε, ε̄ are smooth functions of x) it
is

(εφxx)xx + 2(εφxy)xy + (εφyy)yy − ε̄′′φyy = 0. (6)

These hold in the rectangular region R0, while on its boundary the arbitrariness inherent in φ

may be used to give the simplified boundary conditions

φ = φy = 0 on the edges y = 0, 1,

φ = φx = 0 on the edge x = L .

}
(7)

It is assumed throughout that φ is a smooth function [e.g. φ ∈ C4(R0)].

3. Inhomogenous material of type 1

In this section we consider inhomogeneous material of the type (i): ε = ε(y), ε̄ = ε̄(y),
where both of these are smooth functions. We define the cross-sectional measure of stress as
follows:

F(x) =
∫ 1

0
ε(φ2

xx + φ2
yy) dy. (8)

Straightforward differentiation, use of (5), (7) together with integration by parts gives

F ′′(x) = 2
∫ 1

0
ε[φ2

xxx + φ2
yyx + 2φ2

xxy]dy + 2
∫ 1

0

..

ε̄ φ2
xx dy , (9)

primes denoting (ordinary) differentiation with respect to x, superposed dots differentiation
with respect to y. Let us assume henceforward that

..

ε̄ ≥ 0,

i.e., that ε̄ is convex. In these circumstances it is clear that F is convex in x. Using (8), (9)
together with inequality (65), we obtain

F ′′(x) ≥ 2
∫ 1

0
ε[φ2

xxx + φ2
yyx + 2λ1φ

2
xx] dy, (10)

where λ1, here and subsequently, denotes the lowest positive eigenvalue of

u·· + [λ − (ε1/2)··ε−1/2]u = 0 , y ∈ (0, 1) ; u(0) = u(1) = 0. (11)

The quantity λ1 will subsequently be seen to determine the (estimated) decay rate. Whereas
one cannot, in general, obtain λ1 explicity, let us note, en passant, the easily derived, crude
bound

λ1 ≥ π2εmin/εmax,
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the quantities on the right-hand side denoting minimum and maximum values; this is valid
even when ε̈ fails to exist. What is central to this paper is the manner in which λ1 varies
with the constitutive profile (see Remarks 2,3). The aforementioned property is not the most
compelling one describing the variation of λ1 with the constitutive profil; these are implicit in
Remarks 2,3 and in Section 5.

With a view to establishing that F(x) satisfies a generalised convexity condition, one
requires the following conservation law:∫ 1

0
[ε {

2φxφxxx − φ2
xx + φ2

yy − 2φ2
xy

}− ..

ε̄ φ2
x ] dy = E, (12)

where E is a constant; this may be derived in an elementary manner by multiplying (5) by
φx and integrating with respect to y. Application of (12) to the unloaded end x = L readily
establishes that E ≤ 0. Using this together with (12) and the arithmetic -geometric inequality,
we recover the inequality∫ 1

0
εφ2

xx dy ≥
∫ 1

0
[ε{φ2

yy − 2φ2
xy − θφ2

x − θ−1φ2
xxx}−

..

ε̄ φ2
x ] dy , (13)

where θ is any positive constant. This, together with (10), readily yields

F ′′(x) ≥ (2λ1 − δ)

∫ 1

0
εφ2

xx dy + δ

∫ 1

0
εφ2

yydy

+
∫ 1

0
[ε{2φ2

xyy + (2 − δθ−1)φ2
xxx − 2δφ2

xy − δθφ2
x} − δ

..

ε̄ φ2
x] dy,

(14)

where δ is any positive constant. Choosing θ = δ/2, we obtain

F ′′(x) ≥ (2λ1 − δ)

∫ 1

0
εφ2

xx dy + δ

∫ 1

0
εφ2

yydy

+
∫ 1

0
[ε{2φ2

xyy − 2δφ2
xy − 1

2
δ2φ2

x ] dy − δ

∫ 1

0

..

ε̄ φ2
x dy.

(15)

The last term in (15) is slightly troublesome. Whereas it can be handled in a number of
ways, we choose the way that appears to give the most transparent result (In this connection,
see Remark 2). Integration by parts etc., use of Schwarz’s inequality, use of inequality (65)
yields

−
∫

..

ε̄ φ2
x dy ≥ −4 
λ−1

1

∫ 1

0
εφ2

xyy dy , (16)

where


 = σM(1 − σM)−1, (17)

and where σM denotes the maximum value of σ arising. Simpler, but cruder, estimates follow
on taking the permissible value 
 = 1 (cf. [1]).

It follows from (15), (16) and further use of inequality (65) that

F ′′(x) ≥ (2λ1 − δ)

∫ 1

0
εφ2

xxdy + δ

∫ 1

0
εφ2

yy dy

+(1/2) [4 − 4(1 + 2
)(δλ−1
1 ) − (δλ−1

1 )2]
∫ 1

0
εφ2

xyy dy.

(18)
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Choosing δ to be the largest root of the quadratic term in (18), we have

δ = rλ1, (19)

where

r = 2
{√

(1 + 2
)2 + 1 − (1 + 2
)
}

. (20)

It follows from (8), (18–20) that

F ′′(x) − rλ1 F(x) ≥ 0 , (21)

where r is given by (20).
It follows from this and a well-known Comparison Principle (a generalisation of the curve

under chord property for convex functions; e.g. [13, p. 124]) that F(x) is bounded above by
G(x), the solution of the differential equation corresponding to the differential inequality (21)
and the same boundary conditions. This yields

F(x) ≤ [F(0) sinh{√rλ1(L − x)} + F(L) sinh{√rλ1x}] / sinh(
√

rλ1L)

≤ F(0)e−√
rλ1 x + F(L)e−√

rλ1(L−x), (22)

where the latter step follows by elementary analysis.
This result is not entirely satisfactory as

F(L) =
∫ 1

0
τ 2
yy(L, y) dy

is not generally known. We let L → ∞ and obtain a decay result (reminiscent of a Phragmén-
Lindelöf result) which we embody in a Theorem:

Theorem 1. In the context of a rectangular strip 0 < x < L, 0 < y < 1, for which L →
∞, consisting of inhomogeneous material of Type 1 for which ε̄ is convex, the cross-sectional
stress measure (8) satisfies the decay law

F(x) ≤ F(0)e−√
rλ1 x (23)

where r is defined by (20), (17) and λ1 by (11), provided that

lim
L→∞ e−√

rλ1 L

∫ 1

0
τ 2
yy(L, y) dy = 0 . (24)

Remark 1. It will be noted that (24) is satisfied in particular if

φxx → 0 as x → ∞. (25)

Remark 2. Note that the decay rate given by (23) coincides with that of Knowles [2] in the
case of homogeneous materials with vanishing Poisson’s ratio. Whereas it is possible to do
better than this in particular contexts our aim is to get a relatively simple result which will
give an overall view of how the estimated decay rate depends on varying constitutive profiles
e.g. [1].
Remark 3. The estimated decay rate is essentially the eigenvalue λ1 of (11) (see also the
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Appendix). The dependence of λ1 on the constitutive profile is discussed in [1], and, in the
context of the analogous anti-plane shear problem, in [10–12]. In the present context, for
example, λ1 is, in a sense, a monotonically increasing function of (ε1/2)··ε−1/2.

Remark 4. The estimate (23) can be made explicit in terms of conventional data in either of
the following two circumstances [cf. [7]]:
(a) There is normal loading (i.e., τxy = 0)on the edge x = 0 and the (additional) asymptotic
condition (25) obtains. One then has (via the Conservation Law (12))

F(0) = 2
∫ 1

0
τ 2
xx (0, y) dy . (26)

(b) The normal-stress component and the complementary, tangential displacement component
are specified on the edge x = 0.
Remark 5. The energy approach has been used in connection with the above problem in
[1]. In order to compare the results arising from the two approaches, we quote a very easily
generalised version of the analysis occurring in [1]. Let Rx denote the portion of the rectangle
0 < x < L, 0 < y < 1 betwen abscissae x,L. Define the (positive definite) global measure
of stress in Rx :

E(x) =
∫

Rx

[εφ2
xx + 2εφ2

xy + εφ2
yy+

..

ε̄ φ2
x ] dy , (27)

where one again assumes
..

ε̄ ≥ 0 ( in order that E(x) be a positive definite measure). One has

E(x) ≤ 2E(0) exp[−√
rλ1x] (28)

where r,λ1 are as previously defined, or [cf. [14]) in the case of a semi-infinite region (L →
∞)

E(x) ≤ E(0) exp[−√
rλ1 x] . (29)

It is apparent that the decay rate arising here coincides with that arising in Theorem 1.
Moreover, estimates (28), (29) may be made fully explicit on noting that

E(0) ≤
∫

Rx

[ε _
φ

2

xx +2ε
_
φ

2

xy +ε
_
φ

2

yy + ..

ε̄
_
φ

2

x]dy,

where φ̄ is any smooth function taking the same boundary conditions as φ see [1]
The restriction

..

ε̄ ≥ 0 can be relaxed somewhat [1] – both in the current context and in the
general context of this section, but at the price of a considerably more complicated analysis.

Moreover, this estimate is easily shown to be applicable mutatis mutandis to a fairly general
simply connected region.

4. Inhomogeneous material of type 2

The material is supposed to be inhomogeneous of type (ii) in this section: it is supposed that
ε, ε̄ are both smooth functions of x. We proceed to obtain a decay estimate of the ‘energy’
type.

Multiplying the p.d.e. (5) by φ and integrating over Rx [the region between the abscissae
x and L], gives rise to the following: The quantity defined by
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E(x) =
∫

Rx

[ε(φ2
xx + φ2

yy + 2φ2
xy)+

_
ε

′′
φ2

y] dA (30)

may also be expressed as

E(x) = −
∫

Lx

[εφxφxx − φ(εφxx)x + 2εφyφxy]dy. (31)

Plainly E(x), defined by (30), is positive-definite in φ provided

ε̄′′ ≥ 0,

(i.e., ε is a convex function of x), or, more generally, provided

ε̄′′ > −4π2ε (32)

in view of inequality (66) of the Appendix. The constitutive restriction (32) is assumed – as
a minimum – henceforward, and, in these circumstances, the positive definiteness referred to,
qualifies (30) as a suitable global measure of stress in Rx.

Proceeding as in Knowles [2], we find that

E
′
(x) = −

∫
Lx

[ε(φ2
xx + φ2

yy + 2φ2
xy) + ε ′′φ2

y)] dA (33)

and, after a little manipulation, that∫ L

x

E(x)dx =
∫

Lx

ε(φ2
x + φ2

y − φφxx) dy +
∫

Rx

ε′(φ2
x + φ2

y) dA. (34)

Let us assume pro tem. that the additional constitutive restriction

ε′ ≤ 0, (35)

holds, thereby obtaining∫ L

x

E(x) dx ≤
∫

Lx

ε(φ2
x + φ2

y − φφxx) dy. (36)

If K is any (positive) constant, we obtain from (33), (36), on completing a square, that

E′(x) + 4K2
∫ L

x
E(x) dx ≤ −

∫
Lx

[ ε(2φ2
xy − 4K2φ2

x)

+ε(x){φ2
yy − (4K2− _

ε
′′

ε−1)φ2
y − 4K4φ2}] dy.

(37)

Applying Inequalities (65), (66) we deduce

E′(x) +4K2
∫ L

x

E(x) dx ≤ −ε(x)

∫
Lx

(2π2 − 4K2) φ2
x dy

−
∫

Lx

{4π2 − (4K2− _
ε

′′
ε−1) − 4π−2K4}φ2

y dy.

(38)

We may recover the same decay law as one obtains for homogeneous material (e.g. [15]) if
the (more restrictive) constitutive restriction
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π2+ _
ε

′′
ε−1 ≥ 0 (39)

applies (in place of (32)). If one chooses

K = π/
√

2, (40)

the first term on the right-hand side of (38) vanishes, and the second term is non-positive
provided that (39). On writing

F(x) = E(x) + 2K

∫ L

x

E(x) dx (41)

we obtain

F ′ + 2KF ≤ 0, (42)

and recover, as in [2], [15],

E(x) ≤ 2E(0)(1 + e−4KL)−1 exp(−π/
√

2). (43)

An alternative result can similarly be obtained when (39) is replaced by a different (com-
plementary) constitutive restriction. One readily verifies that the right-hand side of (38) is
non-positive if

K = π√
2
[
√

5 + (
_
ε

′′
ε−1)mπ−2 − 1], (44)

where (ε̄′′ε−1)m is the minimum of ε̄′′ε−1 arising, provided that

−π2 > ε′′ε−1 > −4π2. (45)

One again has

E(x) ≤ 2E(0) {1 + e−4KL}−1 exp(−2Kx), (46)

where K is now given by (44).
The foregoing results may be embodied in a Theorem:
Theorem 2. In the context of inhomogeneous material of Type 2 for which ε(x) satisfies

ε′(x) ≤ 0, (47)

one has

E(x) ≤ 2E(0){1 + e−4KL}−1 exp(−2Kx) (48)

≤ 2E(0) exp(−2Kx), (49)

where
(i)

K = π/
√

2, (50)

when the additional constitutive restriction

π2 + ε′′ε−1 ≥ 0 (51)
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holds;
(ii) where

K = π√
2

[
√

5 + (ε′′ε−1)mπ−2 − 1 ], (52)

where (ε′′ε−1)m means the minimum value of ε′′ε−1 arising, when the additional constitutive
restriction

−π2 > ε′′ε−1 > −4π2 (53)

holds.
Remark 6. In the case of a semi-infinite rectangular strip (L → ∞) one may prove that one
may remove the premultiplying factor of 2 occurring in (49) (e.g. [14], Theorem 2 following).

We now prove a result appropriate to a different set of constitutive restrictions, dropping
(35) in particular, but retaining (51). Denoting by

∣∣(ε′ε−1)+
∣∣
m

the maximum positive value of
ε′ε−1 arising, we may prove – proceeding as previously – that

E′(x) + 4K2
∫ L

x

E(x) dx − 2K2π−2
∣∣(ε′ε−1)+

∣∣
m

E(x) ≤ 0, (54)

where K = π/
√

2. The integro-differential inequality (54) (for L → ∞) of the type

E′(x) + 4K2
∫ ∞

x

E(x) dx − 4K2γ E(x) ≤ 0, (55)

γ being a constant, considered by Vafeades and Horgan [14] in the context of a semi-infinite
von Karman plate. When a semi-infinite region is considered in the current context, the
analysis of the aforementioned paper continues to be valid, giving the following theorem:

Theorem 3. In the context of a semi-infinite retangular region (L → ∞) consisting of
inhomogeneous material of type 2, for which

ε̄′′ε−1 + π ≥ 0, (56)

one has

E(x) ≤ E(0)e−mx, (57)

with

m = π
√

2(
√

1 + M2 − M), (58)

where

M = ∣∣(ε′ε−1)+
∣∣
m

(2
√

2π)−1, (59)∣∣(ε′ε−1)+
∣∣
m

denoting the maximum positive value of ε′ε−1 arising.
Remark 7. The foregoing estimate (57) degenerates for large values of

∣∣(ε′ε−1)+∣∣
m

. It
should be noted also that variants of the estimates (57), arise if the constitutive restriction (56)
is altered, e.g., if (56) is replaced by the convexity restriction ε̄′′ ≥ 0, (57) continues to hold
but with a value of M half that given by (59).

We now discuss how the previous estimates for E(x) may be made fully explicit by show-
ing how to bound E(0) above in terms of data. Let φ ,ψ̄ be any two smooth functions having
the same boundary values as φ. Consider the scalar product (R0 being the entire region)
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(φ̄, ψ̄) =
∫

RO

[εφxxψxx + εφyyψyy + 2εφxyψxy + ε ′′ φy ψy] dA (60)

and suppose

ε′′ε−1 > −4π2 . (61)

It is easily verified, under the latter restriction (bearing in mind (66)), that

(φ, φ) ≥ 0 (62)

with equality iff φ = 0. One easily verifies by integration by parts that

(φ, φ) = (φ, φ). (63)

In view of the properties of the scalar product and (62), Schwarz’s inequality (as applied to
φ, φ) may be used to prove that

(φ, φ) ≤ (φ, φ) . (64)

This result is embodied in an auxiliary Theorem:
Theorem 4. The inequality estimates (48), (49) and (57) may be made fully explicit in terms
of data prescribed on the edge x = 0 [ φ, φx being available thereon in terms of the specified
self-equilibrated load] as follows:

E(0) ≤ (φ, φ) ,

where φ is a smooth function satisfying the same boundary conditions as φ and where the
scalar product (., .) is defined by (60), provided that the constitutive restriction (61) holds.

5. Conclusions

5.1. (A) MATERIAL OF TYPE 1

In connection with the decay estimates for the material of type 1 (smooth variation of elastic
moduli with y), the estimated decay rate essentially depends (in certain circumstances) on the
eigenvalue λ1, defined by [11]. The results of quoted papers show how this varies with the
constitutive profile of the material, e.g. the following are available in [1]:

(i) The quantity λ1(ε) is monotonically increasing in the sense: if (ε
1/2
1 )··ε−1/2

1 >

(ε
1/2
2 )··ε−1/2

2 , the corresponding eigenvalues λ1, λ2 (say) satisfy λ1 > λ2.
(ii) If (ε1/2)·· = 0, then λ1 = π2. If (ε1/2)··ε−1/2 ≥ k (const.) ≥ 0, λ1 ≥ π2 + k; if

(ε1/2)··ε−1/2 ≤ −k (const.) ≤ 0, λ1 ≤ π2 − k; the equality signs coincide.
(iii) The content of (i) may be expressed in an intuitive manner: suppose (ε1/2)·· ≥ 0, then

the more ‘convex’ ε1/2(y) is – towards the y-axis – the greater is λ1; suppose (ε1/2)·· ≤ 0, then
the more ‘concave’ ε1/2(y) is – towards the y-axis – the smaller is λ1.

(iv) Suppose, for definitesness, that the materials properties are symmetric with respect
to y = 1/2, then (ε1/2)··ε−1/2 positive and ‘large’, implies ‘large’ λ1, and corresponds to
relatively ‘hard’ material in the centre with realtively ‘soft’ layers outside. In interpreting
‘hardness’ and ‘softness’, we mean ‘small’ and ‘large’ values respectively of (1 − σ 2)E−1.
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5.2. (B) MATERIAL OF TYPE 2

In connection with the decay estimates for the material of type 2 (elastic moduli varying
smoothly with respect to x), the dependence of the estimated decay constant on the constitutive
profile of the material is complicated, and not easily verbalized (at least in the generality
addressed in the paper). However, the implications of Theorem 2 in a limited – but perhaps not
unrepresentative – set of circumstances are addressed: consider an incompressible material,
or one with constant Poisson’s ratio, that ‘hardens’ with x, essentially characterized by

E(x) = E0 exp(−cx)

or

ε(x) = E−1
0 exp(−cs),

where E0, c are positive constants. It is easily verified that

ε′′ ≥ 0, ε′ < 0.

For such a material, the results of Theorem 2 suggest that the spatial decay constant does not
exceed that for a homogeneous material.

The interpretation of Theorem 3 in verbal/intuitive terms is also difficult (at least in the
generality addressed in the paper). However, we attempt to do so in some particular circum-
stances. Again, for simplicity, we consider an incompressible material or one with constant
Poisson’s ratio: consider one which ‘hardens’ with respect to x for x < δ (a positive constant)
and which ‘softens’ with respect to x when x > δ, characterized by

ε(x) = ε0 cosh{c(x − δ)},
where ε0, c, δ are positive constants. Then

ε′′ ≥ 0; ε′ < 0 for x < δ, ε′ > 0 for x > δ.

The results of Theorem 3 suggest that the decay constant arising in these circumstances is
less than that arising in the homogeneous case. A simimalar conclusion can be drawn for an
incompressible material which ‘softens’ (uniformly) with respect to x, characterized by

ε(x) = ε0 exp(−cx))

where ε0, c are positive constants.

Appendix

Inequality 1: Any smooth function (y), y(0, 1), such that (0) = (1) = 0, satisfies∫ 1

0
ε(y)′2dy ≥ λ1

∫ 1

0
ε2 dy , (A1)

where λ1 is the lowest eigenvalue of

(ε·)· + λε = 0, (0) = (1),

or (via the transformation u = ε1/2) of
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u·· + [λ − (ε1/2)··ε−1/2]u = 0, u(0) = u(1) = 0 .

Inequality 2: Any smooth function (y), y ∈ 0, 1 such that (0) = ·(0) = (1) =
·(1) = 0 satisfies the inequality∫ 1

0
··2dy ≥ 4π2

∫ 1

0
· 2dy . (A2)
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